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Abetracit,

The Feldt -Gilmer congeneric reliability coefficients make it possible

to estimate the reliability of a test composed of parts of unequal, un-

known length. These coefficients include Kristof's coefficient and

Cronhadis alpha'coefficient as special.cases. In this paper the approxi-

mate standard errors of the Feldt -Gilmer coefficients are derived via a

method that uses the multivariate.Taylor's expansion. Monte Carlo simti-

lation is employedto corrobotite the theoretical approximations for

eighc hypothetical tests. It is shown that the Feldt-Gilmer coefficients
4

are-appropriate with both congeneric and tau-equivalent parts. Their,

superiority over the Kristof coefficient increases withthe number of

parts (K > 4). Their standard errors also compare favorably to that of

Cronbach's alpha when applied to tests with tau-equivalent parts.
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Introduction

Measurement situations' sometimes occur in which a multiple-part

measure can be assumed to consist of-congeneric parts,.but not essentially

tau-equivalent parts. Congeneric parts are'parallel in content and mea-
,

sure the same attributes, but differ in length. Tau - equivalent parts are

parallel in content and functionally equal in lehgth. More formally,

partis j'and h are congeneric if their true scores satisfy the relation

T
4
= aT

h
+ b , where a is a constant not necessarily equal to 1.0 and

b is a constant not necessarily equal to 0 . Parts j and h are tau-

equivalent if a = For both types of parts error score variances

and observed score variances may be heterogeneous from part to part.

For congeneric parts the true score variances are, in general, hetero-

geneous. For tau-equivalent gsrts true, score variances are homogeneous.

Examples of congeneric patts are not difficult to find. In'reading

tests the passages often vary in length and in'the number of items based

on each passage. If these numbers of items vary appreciably, the passage

scores will Very likely be congeneric. The ratings of individual judges

on a panel will:be congeneric if some judges concentrate their ratings

in the mide^ of the scale find avoid extreme ratings, while others spread

their ratings over the full range. In an essay test, if the several

,questions differ in difficulty or are given different point values by

the examiner, theescores on the various questions might well be con-

generic rather than essentially tau-equivalent.
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Coefficient alpha [Cronbach, 4951] provides an;acceptable estimate

of reliability if the part scores are essentially tau-equivalent [Novick

ano Lewis, 1967]. Horst's coeffi6ient [1951] will serve for congeneric

parts if the number of items can be assumed to represent the effective

or functional length of each part. In the case of ratings and essay

tests, howeverk the lengths of the parts cannot be inferred from any

obvious feature ofithe,parts. In such situations,` one must use one

or another of the approaches developed by Feldt [19751, Kristof [1974],

or Gilmer and Feldt [1981],

The first purpose of this study was to develop approximate standard

error formulas for the last two of these congeneric reliability coeffi-
._

cients. The basic technique used for this purpose is the "delta" method

of Kendall and Stuart [1969, Volume I, Chapter10]. This methOd makes

it possible to approximate the standard error of certain'statistics (to

order'N-1) even though the sampling distribution of the statistic is

unknowh. The second purpose was to verify the comparative values of

these standard errors through a Montt Carlo simulation of the sampling

distributions of the coefficients. The last purpose was to draw some

conclusions regarding the choice of estimates, on the basis of their

bias and standard error.

The Congeneiiic Coefficints

Because the derivations of these coefficients have been p-, -anted

in detail elsewhere [Gilmer, 1981], they will not be repeated here.
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However, the-notational scheme and the structure of the congeneric model
o

must'bemade explicit,

The congeneric model can be specified-as follows for a test that

consists of K parts:

= Xi + X2 + X3 + + XK

T = Tl + T2 + T3 + + TK

E = El + E2 + E3 + + EK

s.

X = T

X = T + E =.A.T +'b + E a = 1, . . . , K)

EA = 1.0, A >

Eb °= .0

0

In.thia representation X, T, and E are the observed, true, and error

scores for the total test, respectively; Xj , Tj , and Ej (j = 1, . . . K)

4

are part-test observed, true, and error scores. The A are constants

which tepresent the proportions of the total test true score that are con-

tributed by the various parts. They nay be viewed as the "proportionate

functional lengths" A the parts. The b are constants which make allow-

ance for the differences in mean score on the paits, beyond differences'

arising from variation in part-test length. The error scores, Ej , are

assumed to be mutually independent and independent of true scores. The

linear relationship among the part-test true scores implies that they are

perfectly correlated with the true scores on the full test.

O
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Additional parameters of importance are as follows:

a
ij

= covariance of perts i and j

j

2

= variance of part j

= total test true score variance,.and

otal test observed score variance.

GfVen the independence of Ei , E , and Tj the observed score

variances and covariance are as follows:

ii

2 2
a = X

j
a
T
+:

E
(j = 1, . . . ,

"

J .

aij X
i_

X
j T
a
2 (i 0 j)

The total of the covariances in row i of the part-test covariance matrix

is

E a
ij

= X
i

EX
j

-02

T
= X

i
(1-X

i
)a

2

In the part-test covariance matrix for any examinee sample, let the.
rowwith the ].arglii sum of covariances be designated as row A . Desig-

nate by C the quotient obtained by dividing the sum of covariances in

row j by the sum of covariances in row i . Let 7 . ti(1 -I'd. Thep,

Cl = a / t 2 ( 3.4 4* )/7
Li 1 1 or

/
i

( al (1 -J11

if41 iOL

CI
1.0

n,

C
K

a (1T )1/T' (1-T ) 1c10.t00/17

4.1-17 J/
K K/ R.

7
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Consider the pat of functions: . ,

. -

f
1
( ) = 1 1 +i .25-1 -

iit
E I.25-C

i-
? = 0 , and (la)

b

f
Il

(7) =
-2-

K - 1 i- E v(-7237i 7 = 0 . (lb)

One or the other of these functions must be solved for Y , the choice

,
being dictated by the algebraic sign of f1(.25). The solution for Y is

then substituted into the following 6ermula to obtain an estimate of the
A,

total test true score variance:

a
T

= E .

Using the variance ratio definition of reliability,.we then obtain

(2)

the first congeneric coefficient:

0

rFl OR,
ti/ (Y)(Qg).

For the second congeneric coefficient, designated rF2 , we again

identify the row with the largest sum of covariances as row i . We

_then obtain the following quotients:

E
lj 11

D =
1 E 0 0

tj lt

E 2j 62n,
_A#2

E e e
D2 IA 22,

eti

Di
E

= - 1.0

9.j

ELK

D = J#K
K E 8 - 0

tj Kt

-

(3)

aS
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The second congeneric.coefficient is then defined as

(ED

2. 2
(ED ) - EDj 4 **1

'The last congeneric coefficient considered -in this paper is that

derived by Kristof [1974] for a three-part test. To ,apply this estimate

(4)

of reliability to a :Inger test, one must combine parts and reduce the

Instrument to three parts. The formula for Kristof's coefficient is

(a a +; A. A.
)2

(012°13 12 23' 13 23
(5)

(6 )
)(& )82

12 13 23 x

.If a test consists of only three parts, sample estimates r
Fl '

r
F2 '

and

r
K
will be identical.

Approximate Sampling Variances

A method by which the sampling variance of a statistic. can be deter- ,

mined when the sampling distribution is unknown is presented.by Kendall

'"land Stuart [1969, olume I, Chapter 101. This method, called the delta

method, is applicable when the statistic of interest is a function of

"simpler" statistics, the sample values of which are always greater than

zero. With sufficiently ligrge samples, this condition can b# met in the

present context.

The delta method uses the initial terms in the Taylor' expansion of

a function of several variables. Let X... (Xi , X2 , , X )' and a

(a
1

, a
2

... ap)' . Then the terms through the firdt derivative are:

f(X) f(a) + E(X
i i
a )f(0
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'Ka

Vd

Subtracting f(a) from both siaes, we(get
p

f(X)-f(a) = i(Xi-adfi(a) a :N

and squaring, both sides yields the relation

2 PP
[f(X)-f(a)] = EE(Xi-ai)(Xj-ai)fi(a)'fi(a) .

if

If a = E(X) andt[f(X)]-= f(a) , then taking the expected value of

(6)

both sides of (6) gives an expression for the variance of f(X) :

VaT[f(X)i ElEE(Xi-ai)(Xj--spfl(.0fi(2)]
ij

=

iE[Cov.(Xi,X0f1(a)fi(.0]j

Define e(X) = 9 and f(8) = g . We than have

Var[f(X)] * EE
[a_ .1 Cov(Xi,Xj) .

(7)

. i j ,

ae
i

. ae
j

.

L

This last equation is, the same as equation 10.12 of.Kendall and

Stuart [1969].

: In the context of this paper the X
i

represent the sample variances

and covariances ofthe part tests, i.e.1 tie elements in the sample

variance-covariance matrix; the 8
i

are the population variances and

covariances of -thee part tests. The f(X), in our case, is any oae of the

reliability estimates discussed previously. Using r as a particular

reliability estimate and p as its population counterpart, we. obtain

from ( 7):

. Is_ Cov(Xi,XJ).

Var(r) = EE
aei aej

JJ

'10

(8)
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It is necessarYs, then, to determine Cov(X1,X1),.the covariance of

two covariances., in particUlar; we need Cov(S
ij

,Smn) where.i,j,m,n, =

1, -.., K; K= the lumber of\part tests and S represents thd sample
s\n

P
-,

, estimate of ai .. . . . Y''..

,
, - \

'' .

The determination ofTov(S ,1 ) is not streightfotwerd,
. . . .

\ ij mn
,0

Keidall and Stuart develop the covariance of twocovariances with the
1 -. . 4

\
use of Fishertektptatistics Risher, 1928, in :Kendall & Stuart, 1969,

' <,

Volume I]. The end, result of \this extended derivation is as follows:. r

Cov(S

0 V 0
. \ im jn + in jm

. $,
r .

ij si) N-1
(9)

..
'

The variance obtained from ( 8) is'Rot exact. It is correct tó the

Order of N
1

. 'Therefore, the approximation and the true value of the

sampling variance may differ by an amount that involves.N
2

, N
3

,

in the denominator. With N relatively' large, day N > 100, the difference
-

would probably not be of great importance.

Ile:et(ctTVdrigrice or rpi

As in the foregoing section, we presume that the.divisor for C is

the maximum sum ,of row covariances. Withbut load of generality we shall

assume thils maximum occurs for row 1. 'Since the delta methois applied.

to a functior of parameters,14e following relationships are defined

among the paiamiters in the population variance-covariance matrix:

-t

VW.

4
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0

4

Y-"

al al2 al3 alK a
j#1

1j-
.

2
a
21

+ a
23

+ *--
:
Fa

21(
= Ea

2j
j#2

a
K

= a
K1

a
K2

+ + a
K,K-1

= EaK
j

jOK

11
1 4

y = =1.0,
1 a

1

t
2= I

a, /

,
a,

'3 a '

a
K

YK al

The symbol yj is used here, rather -than CJ ., % to emphasize that these

are ratios of parameters.' The pbpulation equation corresponding to
-..

equations (la) and (lb) is

h(aij
). g(aii ,Y) - 1 -

E .25-Yy = 0 .

2

-- The true score variance, 4,, is al /Y /Y and the reliability is

2

aT al

13F1 2=
a
X

, YO",

The variance of the simple estigote of pFl is then given by

KV

Var(rFl)

b=1

r

ap
Fl .

ap
Fl . Cov(Xb,Xd) ,

89b 86d

12

(10)



In this expression KV ' K(K + 1)/2, the total number of distinct elements

in the variance-covariance matrix. The parameters 81 through 8Kc are the

distinct part-test covariances (KC = K(K-1)/2);
eKC+1

through 8Kv are the

part- test'wariances. The statistics XI through XKv are the sample esti-
.

mates corresponding to el through 8Kv

,

ing would be defined:

KV = 10,

8 0, a
12

. For.example, itsK = 4, the Lalow-

$--12-

8
2

= a
13

X
2 = 51,3

5.
= a

14
X
3 = S14

84
.

23
X
4

= S
23

. a
4.

e
5 2

X
5

= S
24

8
6

=034 X
6

=834

0
7

=all X
7

= S
11

8
8

= 0
22

X
8

= S
22

8
9

= 0
33

X
9

= S
33

8
104

= 0
44 0 S44.

Note that the first X-1 terms ate the covariances from row L, the covari-

ances in the sine al . Note also that the elements in the lower triangle

of the population variance-covariance matrix have not been included expli-

citly. This means thac when we refer to 8b (b = 1, KV), that is, when

we refer to one of the d
ij

, we imply that i< j. This fact, that i < j,

. will appisar again, in this derivation.

1

13
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The covariance of S
ij

with S is, from (9),
mn

+

Cov(S
ij

,Smn) =

a
im

a
jn

s N-1

in jm

where N is sample size. Once 4n/30i) (b = 1, '", KV) is found, the

variance of r
Fl

can be approximately determined from expression (11) for

any given population matrix and specified N .

The first step in this process is to apply the chain rule to

ap
Fl

/ae
b

:

2

3

a
T

2
30

2

- a
2 X

30
2

'

z
ap

Fl ,

a
X

a

T
X 30

b
T 30

b .

ae
b

(a

2 2

X)

Thl§ result indicates that we need 302/30 and 302/30
X b T b

The first partial derivative is'straightforward:

aa
2 3( E a + Eaiiij
X

3aeb 0
b

2 if b = 1, , KC

1 if b = KC + 1, KV .

The partial derivative of 3a
2
/30

b
is not as direct:.

30
T
2

902

aeb-
, if b= 1, KC,

30
b

J

0 ,'ifb = KC + 1, KV .

14

(12)

(13)
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We have then

aPF1

ae
b

2

2 "IT 2
o --- - 2o
x ae

b
T

, if b = 1 ... KC

2
-0

T
4

t
o
X

cr
4

X

, if b = KC + 1, KV.

We need to determine aaT/a0b for b = 1, KC:

3°1 3Y
2 al Y - a

1 3eact --- aeb
T

a
Y b , b = 1, KC.

8eb 88b 2

We now need 301/3013 and 3Y/30b . The first of these is

3a
1

3( Vo
lj

)

j#1

30
b

DO
b

1

1 if b = 1, ..., K-1

0 if b = K, KC.

The determination of ay/ae
b

involves implicit differentiation because

Y 6 given implicitly in (10). We have from (10):

h(o
ij

) = g(o
ij

,Y) = 0.

(14)

(15)

(16)
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Therefore,

dh d ag 30
12

.
.

30
14 ...

aa

de
b

de
b

Ba
12 b

Da
13 aeb aa

14
ae
b

/

+
aft__ . +

30
K-1 K. ig. . 3Y

... IIM

ae
b

3Y 30
b

0
'30

K-1,K

which simplifies to

dh ag + a . 0 b . 1, KC.
dO

b
30
b

3Y 0
b

Solving for aype
b '

as required, we obtain:

aY

30b

30
b .

BY

Substituting the right sides of (16) and (17) into (15) we obtain:

where

3g

ae
b

a YI+ a
2 1 1

30
T Y _ u

ae
b

ae
b

2

6 I 1 + (3-a- al\
3Y 30

b i ,=
21.

Y
2

3Y

I = 1 if b = , K-1
I = 0 if b KC.

Again, we need two partial derivatives: ag/aeb , for b = 14 ***, KC,

and ag /aY .

(18)
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Consider first 3g/3Y . From (10) we can. obtain:

. a( J.25 -Y) a( 175.-77)

BY 3Y kg 3Y

where

1( .25 -Yyk) k
3Y

2

Thus., we have

..:1; E
Yk

aY
2 72511 loii_27575T;

The minus sign is used if Al > .5 , otherwise the plus sign is used.

Now consider the numerator of (17).R From (10) we can obtain

where

So we have

acTIT-717
_ E

ae
b k #1

ae
b

-Y
3y
k

ae
b r.25 -Y714 80b

.L. E
aYit

ae
b k#1 2175.77- ae

b

17

(19)

(20)
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What now remains to be determined is ayk/a0b . Applying the chain rule

we obtain:

a
k

asi
k

. aa
1

a.-- a
ayk al 1 aeb

a

111

k aeb
b = 1, KC.

ae
b

aeb a2
al

(21)

And once more we need two partial derivatives: aa
k
/ae

b
and 3a /ae

1 b

b = 1, KC.

Consider aa
k
/86

b
first:

aak
a(ak1 Ckz ("71,k) akK)

aeb ao
ij

Now consider

1

1 if k= i or k= j,

0 if k# i and k # S.

aalimb

aa1 a(cr
12

+
13

+
4' a 1K

)

ae
b

ao
ij

J, (23)

0 if i # 1.

Combining (22) and ( 23) into ( 21 ) we obtain

s-

y 3y, a
1
P-ak9

< j, b = 1, KC, (24)

ae
b

aa
ij,

2 '

a
1

18
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{ 1 if k i or k so j

P se

4-
I.

1 if i i 1-

0 otherwise

0 otherwise

In summary, then, we have

where

aa 2

ae
T

- 2a'2I

b 1, , KC

30 a4
X

Or
2

-a
T

, if b an KC + 1, , KV.
4a
X

2

(! (11- cg'1

aa
T

4)

SY ae
b.

30
b

2

aY

1 if b 1, , K-1
I as

0 if 17--.1- , KC

1 +
yk

aY
2 k#1 2

aY2IL Y

a
eb k#1 .25--Y7=

aeb

19

(25)

(26)

(27)

(28)

E.
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P.

aYk a1P-m0
= - , < j, b = 1, ,KC (29)

b ij - al

P
1ifk =cork =j

0, otherwise

{1 if i = 1

Q
0 otherwise

Finally, by. substituting (24 ) into (25 ) we obtain

where

ap
=

c; 11
)

8
b

:: Y I 4: IL al
ay 3

20
2

y2 21 T
ay

4
ae
b crX

2

-aT

c
4

1 if b = 1,
I =

0 if b = K, KC,

, if b = 1, ..., KC

, if b = KC + 1, ..., KV

(30)

and ag/ay and ag/a8b are determined by expressions:(27 ), (28 ) and (29 ).

Clearly, the determination of the theoretical variance of involves

considerable computation. Id the present study computer progtams were

developed to evaluate the -multitude of-terms arising for illustrative

matrices presented in a later section.

20
r

a
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Meoretioal ftrianoe of
rF2

The population counterparts to the
j
on.page 5 will henceforth be

represented by In this notation,.

QCO2,
Bj - aj_crj lt

ji

t , K

where
i

is defined as before, namely,the *um of the population covari-

ances in row j.

The population reliability, analogoui to equation ( 4 ); is

(Esi)2 jE0 jEajj

2
a
X

(ES ) - Ea

ifs

By equation ( 8 ) the variance of r F2
is

Var(rF2)

KV KV
30

F2 .

30
F2

=
a8b ae

d
b=1 d=1

Cdv(X\0
u

,,X,) ]
.__

where the 8i and X
i
are as)defined as befdr

- im
a
jn

+ a
in

a
jm .

Cov(S ,s u) =
ij_ um_ N-1

What we now need to find is 3c4F2/381, for b - 1, KV. We have

NN 2
902

3a2
3

c/T
2 T

2 a - a
2 X

apF2
ax X 386 T 386

b .
(a2 )

2

NN

N 21
N

, 1, , KV.

.
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Equations ( 12) and ( 13) hold in this situation:

E

3a2

ae
b

ae
b

2 if b = 1, , KC

1 if b = KC + 1, , KV, and

2
3a
T

b = 1, , KC
ae
b

0 , if b = 1,%, KV.

cation ( 14) also holds: -

aPF2
aeb

2

2
3a

T 2
. - [0

x 30 T

4
if b = 1; , KC

2
-a

T

4
a
X

We need to find ai 30b
'

varrant-d may be written

for

EE a
ij

a2 i#

Ems_21
2

(E-0-4

, ifab =5 KC + 1, , KC.
V

1, , KC, where the true score-
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Then we have

EB2

1 -

Da
T

2
_ . ( EE a

ij
)

4(E13 ) b ,

Eiji! aEE04.4

^ 2 30 . ae
b

(E0j)2

ae
b EB2i 2

(Eo )2

Clearly, we need the two partial derivatives:

3 EE ai4

ae
b.

Consider the .first:

E02

a (
(EB

j

)g

_ for b. g. 1,

a EEa
lj 9(2a + 20 + + 2a )

i #j 12 13 K-1,K
30
b

ae

Consider the second:

a (i E8.12 a

(EO )
2

(
(EB )

2

aeb aeb '

(31)

(32)

b 1, KC. (33)

23
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Then

(

E02

a_____11! . ! 3:::!)

2

(EB y VOI Jo

--2-2Z) ei.

i ae

aela

b.

(ES
i
)4

(34)

So we need a(Es
j
)
2
/aeb

and azo AO
b '

for b = 1, KC. We then obtain:
j

and

a(Es - )2 3(E$ ) 304
= 2E0

2
= 2ES E

aeb
aeb j ae

,b

2 2
aEa, ' ao4 aei 304

----1- '11 E '--..j rs Ei 0 1- 81 2E0 --IL-
ae .. ae j ae j aeb
b a) b

Now-we-need only ae
j
/se

b
. We obtain

a(a -a ) a(a
k
-a

k
)

(a
ft
-a jk) aamn :

(a
j
-a
it

)
aamn

(arajt)
2

e

24

c

(35)

(36)

(37)*

4
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We need then a(cs
j
or

it
)/aann

b = 1, KC. So

a(m 8 )
.

and a(ce-a
jt
)/aa

mn
. We know m < n, since

t

1 if (t # n and j = m) or (t # m and j -.11),

0, otherwise,

1 if (2. = n and j # m ) or (t = m and j # a),

Olotherwise.

into ( 37) we obtain

(ataitlI-(afajt)J

(38)

(39)

(40)

Oa
Inn {

a(at 0 I)

as
MIK

Substituting these results

aBja0.1

aet, aamn , ,2 '

acajt J

\,twhere

I =
0 otherwise

1 if (it # n and j = m *or (t # in and j = n)

1

Substituting

1 if (t s, n and j # m) or (t = m and j # n)

J =
0 otherwise

( 34)., ( 35) 'and (.36) into ( 33) we obtain

a(

0

2

(E0 ) aeb

Es

(E02 2E8 E0 E )
2
2E0

2
as

j j aeb

as

aeb'I
(E8 )

4

EBB E-'11 E0 E0 21
2 4)\, aeb 7eb .

(E8 )3

25

(41)

9

ti



where

Summarizing, we have

F2

23

au

2
2H -'EE

ij a0b
2a

X
.

H2

2a
T

if b = 1, KC

a
X

aob
1 2,

4
a .

ra!

tf- ---

(Es )4
J

(42)

r if-b K KC 4- 1, KV

S

and 3H/38
b

is determined from (40 ) and ( 41) above.

5

0

As in the case.of the standard error of rFl, the standard error for

r
F2

involves a large number of'terms'for even a relatively small value of

K. For the illustrative matrices presented later, the evaluation wast-4:
41

accomplished via a computer program written for this purpose.

Theoretical Variance of rK

To apply the delta method to

(a
12

a
13

+
a12a23

+ a
13

a
23

)
2

PK
(a
12

)(a
13

)(023)aX

equation ( 8 ) must be evaluated for the following six parameters and

their associated sample estimfteat

26



O

01 = al2 Xi 7, S12

X
2
= S

13

83 = a23 X
3
= S

23

e4 all
X
4
= S

11

a5 a22
X
5

= S
22

8
6
= a

33
X
6
= S

33

We again obtain

aa
2

2 T 2
a ---- - 2a
x ae

b
T

ae
b ,

T
4

a
X

, if b = 1,2,3

, if b = 4,5,6.

(43)

.2
This result indicates we must find aaT/aeb for,b 1,2,3. It will be

2
easier to follow thg subscripts if aT is expressed as a function of the

e :

9

vt,

:-

2 (03.02 + el-A 3
.1 A

2-A 3'

N2

aT l
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Letting A = (8 8 + 9193 + 0 81 2 2 3)
and B = 0 0

3
, we have

2 A2
aT B

ti

Now,

4

3A
2 2 BB -

3a2 B
381)

A
38

b

B2

ZS

3A A2 3B
30b 30b

B2

2BA(E81-8b) - 'A^2 B

B2

0 -A) 2ib b A
2A

0 9b

B

b

A[2 (EA i0b-eb ) -Al

Beb

2aaT
Aif b = 1,

b
30, =

B91
(0102 + 9193 -9293)

if b = 2 ,

if b x. 3 ,

aa2
T A

.30 b
B02

+
20 34 10 3)

aa2
A

30b
T =

B03
(A 0

1
+ 0302-0102) .

28



Then we have

26

aa
2

IT A
(o,

22)
e
b

30
b

BO
b

Be
b

d

2

T
8
b
-2A

, if b = 1,2,3.

eb

Substituting the foregoing result into (43) we finally obtain

aPic

ae
b

, b = 1,2,3

, b = 4,5,6

(44)

whereA=08 +08- +ee
1 2 1 3 2 3'

and the 8 are defined on pages 24-25. In

evaluating the double summation ( 8 ) for Var (r
K
), we again use

Cov(S
ij

,Smn)
=aim ,j n

N-1
oin cl,jm

We have now derived formulas for the approximate sampling variance

of rpi , r7,2 , and rx . These expressions involve a large number of

terms, since the index of each of the double summations in equation ( 8 ).

runs from 1 through K(K41)/2 , or K2(K+1)2/4 terms in all. Evaluation of
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the Summation requires the numerical value of the elements of the popu-

lation variance covariance matrix, quantities which are never known in

practice. However, they can be evaluated for any postulated matrix. This

has been done for eight illustrative matrices presented in the next
olk

section. In the following section we summarize the results of a Monte

Carlo study undertaken to corroborate the theoretical approximations.

Illustrative Applications of the Sampling

Variance Derivations

The, foregoing formulas for the squared standard errors were applied

to eighthypbthStiCkl measures with the variance covariaice matrices

presented in, Tables l and 2. The purpose of these applications was to

gain some inCght.into the comparative stability of the three reliability°
,

coefficients The four -matrices in Table 1 presume four-part tests and

those in Table 2 eight-part tests. Within each of these values of K

two of the h othetical measures have a population reliability (p) of .6

.

and two others ve'a reliability of .833 . Within each pair'of matrices

I

associated wi a given K and p , one matrix represents tau-equivalent

I

parts and the'othei congeneric parts. (Tap-equivalent parts exhibit

homogeneous i ter-pert covariances; congeneric parts do not, except in

the special case of'tau-equivalence.) The tau-equivalent parta for these

hypothetical we:urea are not parallel in the classical sense, since the

variances of the parts are unequal--a phenomenon. which implies unequal

error variances.



TABLE I

Population Covariance Matrices: K = 4

=

Essential Tau-Equivalent Congeneric

.833

.6

21.375
9.375
9.375
9.375

48.375
9.375
9.375
9.375

9.375
18.375
9.375
9.375

9.375

39.375
9.375
9.375

9.375
9.375
15.375
9.375

9.375
9.375

29.375
9.375 '

9.375
9.375
9.375

12.375

9.375
9..375

9.375
20.375

gi-

38 18

18 21.5

12 9

- 6 4.5

r64 18

ld 43.5

9

4.56

12

9

11

3

12

9

26

3

6

4.5

3

4.5

6

4.5

3

11.5

Al
= .4

A
2
= .3

A
3
= .2

A
4
= .1_

-.

Al = .4

A
2
= .3

A
3

= .2

A
4

= %1_.

31



cr TABLE 2

Population Covariance Matrices: K = 8

Essential Tau-Equivalent

p = .833

p= .6

10.34375
6.34375
6.34375

7.34375 2.34375
5.34375

2.34375 5.34375
4.34375

3.34375

al

28.34375
16.34375

15.34375 2.?4375
18.34375

12.37.375

2.34375 . 12.34375
9.34375
6.34375

14

6,

4.5

4.4

3

3

1.5

1.5

32

6

4.5

4:5

3

3

1.5

1.5

6

10

4.5

4.5

3

'3

1.5

1.5

6

20

4.5

4.5

3

3

1.5

1.5

4.5

4.5

7.375

3.375

2.25

2.25

1.125

1.125

4.5

4.5

16.375

3.375

2.296°

2.25

1.125

1.125

4.5

4.5

3.375

8.375

2.25

2.25

1.125

1.125

4.5

4.5

3.375

19.375

2.25

2.25

1.125

1.125

3

3

2.25

2.25

4.5

1.5

.75

-75

3

3

2.25

2.25

11.5

1.5

.75

.75

3

3

2.25

2.25

1.5

4.5

.75

.75

3

3

2.25

2.25

1-.5

11.5

.75

.75

1.5

.1.5 .

1.125

1.125

.75

.75

2.375

.375

1.5

1.5

1.125

1.125

.75

.75,

7.375

.375

1.5

1.5

1.125

1.125

.75

.7

.375

1.375

.10

el.1

1.5

1.5

1.125

1.125

.75

'.75

.375

4.375

Al = .2

A
2
= .2

A
3
= .15

A
4

= .15

A
5
= .1

A
6
= .1

A
7

.05
o

A
s
= .05

Al =

A
2

= .2

A3 = .15

A
4
= .15

A
5

.1

A
6
= .1

A7= .05

A
8
= .05

32 .
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When an illustrative matrix confprms to the tau-equivalent model,

each part is of length 1/K by definition. When an illustrative matrix

confc;imsto the congeneric model, the largest part is arbitrarily set

equal to four times the length of the smallest port. The lengths of the

- parts, that is, the values of , are indicated to the-right of each

,row in the matrix. The true score variance was arbitrarily set equal to

150 for all population matrices.

The approximate standard errors of the three coefficients computed

for the eight illustrative matrices art presented in Table 3. When the

part-tests-are tau-equivalent, the standard error of coefficient alpha

(rd.ialio included. It was computed via the delta method rather than

from its tr.e sampling distribution, which is (l-p) F,,, *in order to
"1'2

achieve greater comparability to the other standard errors. The divisor

of all of the standard errors,4717, has been omitted frowthe values

in Table 3. Table 4 presents the standard errors evaluated for sample

sizes of 50;100, and 200.

The sample value of-rim and its theoretical standard error will be

affected, to a small-degree, by the row sum chosen as the divisor in

computing D1 , . (The population parameter 1)72 does not depend

on this choice.$ The results presented here are based on the use of the

row one sum as the divisor. However, the variancfs obtained by the use

of other row* are very close to the results obtained here.

The sample value of rit and the variance of rx are dependent upon

the numerical values of the variances and covariances for the three parts

34



TABLE 3

Theoretical' Standard .Errors Times

Congeneric

p -.6 p ;833

rill. .6985 .2937

K 4
.

r
F2

.6993 .2941

I i r
K

.7055 .2961

rFl .6149 .2571

.6151 .2571K 8 rF2
rK .7055 .2939

t

Essential Tau Equivalence

rFl
.6512 .2744

K 4 r
F2

.6512 .2744

rK .7765 .3288

r .6513 .2744

rFl
8 F2

rI
ra

.6052

.6052

.7765

.6053

.2536

.2536

.3288

.2543
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TABLE 4 -

Theoretical Standard Errors for Three Sample Sizes

Congeneric

-p is .6 p

50 100 200 50 100 200

r
Fl

.0997 .0702 .0495 .0419 .0295 .02013

K 4 rF2
09,9 .0702 .0495 .0420 .0295 .0208

r
K

.1007 .0709 .0500 .0423 .0297 .0209

rF1
.0878 .0618 .0435 .0367 .0258 .0182

K = A rF2
0878 .0618 .0436 .0367 .0258 .0182

r .1007 .0709 .0500 .0419 .0295 .0208

Essential Tau-Equivalence

r
F1

.0930 .0654 .0461 .0392 .0275 .0194

K - 4

r
F2

.0930 .065,4 .0461 .0392 .0275 .0194-

r
K

.1109 .0780 .0550 .0469 .0330 .0233

r
a

.0930 .0654 .0462 .0392 .0275 .0194

Fl
.0864 .0608 .0429 .0362 .0255 .0180

K - 8
r
F2

.0864 .0608 .0429 .0362 .0255 .0180

r
K

.1109 .0780 .0550 .0469 .0330 .0233

r .0865 .0608 .0429 .0363 .0256 .0180

36
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of the measure. Different values can occur from the different ways in

which a four-part (or more) test is reduced to three parts. In general,

the more nearly equal the parts, the smaller is the standard error. To

achieve maximum part-test homogeneity, the four -part tests were reduced

to three by combining parts three and-four.- The eight-part tests were

reduced to three by combining parts one with two, three with four, and

five through eight.

The results in Table 3 and 4 show that the standard errors of r

and rF2, each of which maintain the identity of all parts and all inter-

Fl

part covariances, decrease from K = 4 to K = 8. For example, under a

congeneric test with p = .6 and N = 50, the standard error of rill: is .0997

with K = 4 and .0878 with K = 8. Thus, these coefficients show the same

trend as r
a
with increasing numbers of parts.

The tables also show that the standard error of rK
is larger than

the others. With K = 4, the difference is small. With K = 8, however,

the standard error of rK
is thirty per cent greater than that of r

Fl
and

-y

rF2 . It seems clear that the advantage of
rFl

and rF2 over rK depends

on the difference between the original K and K = 3.

Another result of interest is the comparison of the standard errors

of r
Fl

and r
F2

with each other and with that of ra
. Even under tau-

equivalence, the standard errors of rFl and rF2 compare favorably to that

of r
a

. Moreover, thi'more easily computed congeneric coefficient, rF2

is as stable as r
Fl

The latter estimate requires an iterative compu-

tational proce4ure which is
\ feasible by hand, but rather tedious.

v

3
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Monte Carlo Confirmation of the

Theoretical Standard Errors

The population matrices in Tablesllid 2 were used to generate

sample matrices through a procedure developed by Odell and Feiveson [1966]

aid Browne [1968]. Two thousand sample matrices were generated under each

of the twenty-four combinations of the following conditions:

Number of part-tests: X = 4 and IC = 8

.Population reliability: p = .833 and .6

Model: tau-equivalent and congeneric

N = 50C N = 100, N = 200 .Sample size:

All of the foregoing coefficients ,were computed for each of 2000

sample matrices under each configuration. In addition, the Mayekawa and

Haebara [1980] least squares coefficient for congeneric tests, designated

r
LS

, was computed for comparative purposes for each sample matrix. The

empirical standard errors are reported in Table 5. The dif4rences be-

tween the Monte Carlo sad theoretical standard ervots, and the per cent

deviation from the theoretical values, are presented in Table 6:

, The theoretical approximations by the delta method agree fairly

closely with the empirical estimates of the standard errors of r
Fl

, r
F2 '

0

and r
x

The largest differeices occur in instances where negative sam-

ple covariances were more likely, that is,, with p = .6.and N =50. (Nega-

tive sample covariances must.he assumed not to occur for valid application .

of the delta method.) The same issue probably accounts for the empirical

standard errors of r
K

being substantially greater than the theoretical

3



TABLE

Standard, Errors of Monte Carlo Sampling Distributiond

Congeneric

p .6 p .833

N 50 100 ' 200 50 100 200

rr
1

.0960 .0719 .0515 .0433 .0307 .0220

K 4
r
F2

.0958' .0717 .0515 .0432 .0307 .0220

rK .0972 .0720 .0515 .0435 .0308 .0221

r
LS

.0981 .0730 .0516 .0435 .0307 .0220-

r
Fl

'.0784 .0613 .0439 .0380 .0270 .0184

K = 8
r
F2

.0770 .0613 .0438 .0379 .0270 .0184

r .0952 .0688 .0497 .0434 .0307 .0209

r
LS

.0845 .0640 .0448 .0386 .0273 .0185

Essential Tau-Equivalence

r
Fl

...0842 .0639 .0464 .0405 .0287 .0203

r
F2

.0830 ,:0630 .0462 .0404 .0286 .0203

r .1133 .0919 .0648 .0497 .0349 .0245.

r
a

.0893 .Q671 .0476 .0422 .0292 .0206

r
LS

.0845 .0641 .0465 .0405 .0287 .0203

r
Fl

.0754 .0594 .0436 .0375 .0247 .0184

K = 8 rF2
.0758 .0581 .0442 .0372 .0266 .0184

r
K

.1133 .0883 .0646 .0498 .0344 .0243

r
a

.0775 .0610 .0443 .0387 .0271 .0185

LS
.0816 .0607' .0438 .0377' .0267 .0184

1...........11..
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value. With p = .833 the d = crepancy between empirical and theoretical

standard. errors was le = than 6 per cent for all twelve combinations of

N and K . Undou edly this discrepancy is largely accounted for by the

limitation of the delta method.

Concluaione and Recvmmendations

The theoretical and empirical standard errors lead to the following

conclusions:

1) For the congeneric case'and K = 4, the standard errors of r
o Fl

r
F2

, r K and rLS exhibit no important differences with samples

greater.50 or greater. But with K = 8, the standard error of rK
is Oub-

stantially larger than those of rFl , rF2 and r
LS

2) In almost all cases the standard errors of rFl
and r

F2
are smaller

than those of the other coefficients. This finding alsati holds true

under tau-equivalence, inwhich re was included among the comparisons.

3) The coefficients which maintain the identity of the parts and are
a

based on the full set of part-test variances and coiliariances (r
Fl

rF2 , re ,
Lb

exhibit decreasing standard errorsias the number
,

of part-tests increased from four to eight. The/standard error of a

Kristof coefficient did not depend on the original number of parts

before combination.

4) In every comparison the standard errors of r;1 and r
F2

show no

material difference. To achieve this approximate equality it may

be necessary to use tbl largest part-test t; define the pivot row

for-r
F2

.

41
. ,
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The,bias of all the coefficients was also examined in the Monte

Carlo study. None of the'coefficientas exhibited any substantial bias

except cocificient alpha under the congeneric case. The negative bias

of r
a

in this siimation was to be expected.

Which of these coefficients is to be preferred for a measure with

congeneric parts depends on the factors of most importance to the

researcher. In terms of computational simplicity, rF2 and rK have a

distinct advantage over r
Fl

and r
LS

. (Coefficient r
LS

is probably

impractical without a computer routine for its computation.) In terms

of their standard errors rF1 , rF2 and rLS are preferable to rK . If

uniqueness is considered an advantage--in the sense that for a given

set of data arbitrary decisions do not affect the computed reliability

coefficient--then rF1 and rLS are preferred over rF2 and rK .

As a compromise the authors favor rF2 . No disadvantage is associ-

ated with this coefficient in terms of standard error. Computation is

not difficult once the part-test variance covariance matrix is available.

Monte Carlo simulation data suggest that the row with the largest sum of

elements serves well as the pivot row. If the researcher is uncertain

Whether the parts can be assumed to be tau-equivalent or can be regarded

to be only congeneric, rF2 loses no adyantage that coefficient alpha

might be thought-t6'have. Coefficient r
F2

is as adequate as alpha for

truly tau-tc.ivalentparts and quite superior to alpha with congeneric

parts.
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